Abstract

The automatic detection of retinal blood vessels by computer aided techniques plays an important role in the diagnosis of diabetic retinopathy, glaucoma, and macular degeneration. In this paper we present a semantically flexible feature fusion network that employs residual skip connections between adjacent neurons to improve retinal vessel detection. This yields a method that can be trained employing residual learning. To illustrate the utility of our method for retinal blood vessel detection, we show results on two publicly available data sets, i.e. DRIVE and STARE. In our experimental evaluation we include widely used evaluation metrics and compare our results with those yielded by alternatives elsewhere in the literature. In our experiments, our method is quite competitive, delivering a margin of sensitivity and accuracy improvement as compared to the alternatives under consideration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.