Abstract

We present a theoretical basis for supporting subjective and conditional probabilities in deductive databases. We design a language that allows a user greater expressive power than classical logic programming. In particular, a user can express the fact thatA is possible (i.e.A has non-zero probability),B is possible, but (A ⋀B) as a whole is impossible. A user can also freely specify probability annotations that may contain variables. The focus of this paper is to study the semantics of programs written in such a language in relation to probability theory. Our model theory which is founded on the classical one captures the uncertainty described in a probabilistic program at the level of Herbrand interpretations. Furthermore, we develop a fixpoint theory and a proof procedure for such programs and present soundness and completeness results. Finally we characterize the relationships between probability theory and the fixpoint, model, and proof theory of our programs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.