Abstract

In Open-domain Chinese Knowledge Base Question Answering (ODCKBQA), most common simple questions can be answered by a single relational fact in the knowledge base (KB). The abbreviations, aliases, and nesting of entities in Chinese question sentences, and the gap between them and the structured semantics in the knowledge base, make it difficult for the system to accurately return answers. This study proposes a semantic union model (SUM), which concatenates candidate entities and candidate relationships, using a contrastive learning algorithm to learn the semantic vector representation of question and candidate entity-relation pairs, and perform cosine similarity calculations to simultaneously complete entity disambiguation and relation matching tasks. It can provide information for entity disambiguation through the relationships between entities, avoid error propagation, and improve the system performance. The experimental results show that the system achieves a good average F1 of 85.94% on the dataset provided by the NLPCC-ICCPOL 2016 KBQA task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.