Abstract

To develop a precise semantic segmentation method with an emphasis on the edges for automated segmentation of the arterial vessel wall and plaque based on the convolutional neural network (CNN) in order to facilitate the quantitative assessment of plaque in patients with ischemic stroke. A total of 124 subjects’ MR vessel wall images were used to train, validate, and test the model using deep learning. An end-to-end architecture network that can emphasize the edge information, namely the Edge Vessel Segmentation Network (EVSegNet) for automated segmentation of the arterial vessel wall, is proposed. The EVSegNet network consists of two workflows: one is implemented to achieve finely and multiscale segmentation by combining Dense Upsampling Convolution (DUC) and Hybrid Dilated Convolution (HDC) with different dilation rates modules, and the other utilizes edge information and is fused with another workflow to finally segment the vessel wall. The proposed network demonstrates robust segmentation of the vessel wall and better performance with a Dice (%) of 87.5, compared with the traditional U-net that has a Dice (%) of 81.0 and other U-net-based models on the test dataset. The results suggest that the proposed segmentation method with an emphasis on the edges improves segmentation accuracy effectively and will facilitate the quantitative assessment of atherosclerosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.