Abstract

Early diagnosis of lung nodules is important for the treatment of lung cancer patients, existing capsule network-based assisted diagnostic models for lung nodule classification have shown promising prospects in terms of interpretability. However, these models lack the ability to draw features robustly at shallow networks, which in turn limits the performance of the models. Therefore, we propose a semantic fidelity capsule encoding and interpretable (SFCEI)-assisted decision model for lung nodule multi-class classification. First, we propose multilevel receptive field feature encoding block to capture multi-scale features of lung nodules of different sizes. Second, we embed multilevel receptive field feature encoding blocks in the residual code-and-decode attention layer to extract fine-grained context features. Integrating multi-scale features and contextual features to form semantic fidelity lung nodule attribute capsule representations, which consequently enhances the performance of the model. We implemented comprehensive experiments on the dataset (LIDC-IDRI) to validate the superiority of the model. The stratified fivefold cross-validation results show that the accuracy (94.17%) of our method exceeds existing advanced approaches in the multi-class classification of malignancy scores for lung nodules. The experiments confirm that the methodology proposed can effectively capture the multi-scale features and contextual features of lung nodules. It enhances the capability of shallow structure drawing features in capsule networks, which in turn improves the classification performance of malignancy scores. The interpretable model can support the physicians' confidence in clinical decision-making.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.