Abstract

Host-based anomaly intrusion detection system design is very challenging due to the notoriously high false alarm rate. This paper introduces a new host-based anomaly intrusion detection methodology using discontiguous system call patterns, in an attempt to increase detection rates whilst reducing false alarm rates. The key concept is to apply a semantic structure to kernel level system calls in order to reflect intrinsic activities hidden in high-level programming languages, which can help understand program anomaly behaviour. Excellent results were demonstrated using a variety of decision engines, evaluating the KDD98 and UNM data sets, and a new, modern data set. The ADFA Linux data set was created as part of this research using a modern operating system and contemporary hacking methods, and is now publicly available. Furthermore, the new semantic method possesses an inherent resilience to mimicry attacks, and demonstrated a high level of portability between different operating system versions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.