Abstract

A self‐powered, sliding electrification based quasi‐static triboelectric sensor (QS‐TES) for detecting angle from rotating motion is reported. This innovative, cost‐effective, simply‐designed QS‐TES has a two‐dimensional planar structure, which consists of a rotator coated with four channel coded Cu foil material and a stator with a fluorinated ethylenepropylene film. On the basis of coupling effect between triboelectrification and electrostatic induction, the sensor generates electric output signals in response to mechanical rotating motion of an object mounted with the sensor. The sensor can read and remember the absolute angular position, angular velocity, and acceleration regardless being continuously monitored or segmented monitored. Under the rotation speed of 100 r min−1, the output voltage of the sensor reaches as high as 60 V. Given a relatively low threshold voltage of ±0.5 V for data processing, the robustness of the device is guaranteed. The resolution of the sensor is 22.5° and can be further improved by increasing the number of channels. Triggered by the output voltage signal, the rotating characteristics of the steering wheel can be real‐time monitored and mapped by being mounted to QS‐TES. This work not only demonstrates a new principle in the field of angular measurement but also greatly expands the applicability of triboelectric nanogenerator as self‐powered sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call