Abstract
Freight trains, being crucial for economic development, often face challenges due to the lack of electrical infrastructure. In this study, a self-powered and self-sensing hybrid energy harvester system (SS-HEH) is proposed, it consists of an electromagnetic generator (EMG), a piezoelectric energy harvester (PEH), and an energy input module. The proposed EMG utilizes a rolling magnet to intersect the square coil, thereby better adapting to the operational conditions of freight trains and producing higher electrical energy output. Additionally, the PEH converts bogie vibration signals into electrical signals to detect bogie operations. The EMG acts on the PEH, inducing bending and generating electrical signals. Conversely, the PEH acts on the EMG to maintain it horizontally, enhancing its ability to absorb the vibration energy of the bogie and forming a bistable system. Furthermore, at a speed of 40 km/h, the EMG voltage with PEH increased by 43.75 % compared to the scenario without PEH. The electrical performance of the SS-HEH was assessed through shake table experiments, yielding an RMS voltage of 11.5 V and output power of 74.1 mW. In addition, combined with deep learning, SS-HEH has an accuracy of 97.41 % in detecting the operating status of bogie.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.