Abstract

Doors are important landmarks for indoor mobile robot navigation and also assist blind people to independently access unfamiliar buildings. Most existing algorithms of door detection are limited to work for familiar environments because of restricted assumptions about color, texture and shape. In this paper we propose a novel approach which employs feature based classification and uses the Kohonen Self-Organizing Map (SOM) for the purpose of door detection. Generic and stable features are used for the training of SOM that increase the performance significantly: concavity, bottom-edge intensity profile and door edges. To validate the robustness and generalizability of our method, we collected a large dataset of real world door images from a variety of environments and different lighting conditions. The algorithm achieves more than 95% detection which demonstrates that our door detection method is generic and robust with variations of color, texture, occlusions, lighting condition, scales, and viewpoints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.