Abstract

We revisit the self-dual variational approach to the resolution of non-linear stationary, parabolic and stochastic partial differential equations involving a monotone non-linearity, by relaxing the hypothesis under which it is applicable, in two directions: The prohibitive coercivity condition which was problematic for applications to evolution equations, be them deterministic or stochastic, and the restrictive “regularity” property that required the domain of the non-linear operator under study to be large. The new principle is applied to give more direct proofs for the existence of weak solutions for incompressible Navier-Stokes equations in their stationary, dynamic or stochastic versions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.