Abstract

In this paper, we present a self-consistent model of an optically mode-locked semiconductor fiber ring laser. The fiber laser uses a semiconductor optical amplifier (SOA) as the gain medium, while mode-locking is achieved by its gain modulation, via an external optical pulsed signal. We solved the model analytically developing a novel technique, where we have assumed double saturation of the SOA by both the mode-locked and the externally introduced pulsed signal. The study revealed the locus of the laser parameters to achieve mode-locking. In particular, it was found that SOA gain and energy of the externally introduced signal are two critical parameters that must simultaneously set properly for exact mode-locking. Another outcome of our analysis is that the study of the chirp parameter should be carried out keeping the nonlinear terms of the SOA gain. We have also investigated a slightly detuning regime of operation that revealed a fast change of the mode-locking process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call