Abstract
Abstract An unexpectedly slow evolution in the pre-optical-maximum phase was suggested in the very short recurrence period of nova M31N 2008-12a. To obtain reasonable nova light curves we have improved our calculation method by consistently combining optically thick wind solutions of hydrogen-rich envelopes with white dwarf (WD) structures calculated by a Henyey-type evolution code. The wind mass-loss rate is properly determined with high accuracy. We have calculated light curve models for 1.2 M ⊙ and 1.38 M ⊙ WDs with mass accretion rates corresponding to recurrence periods of 10 yr and 1 yr, respectively. The outburst lasts 590/29 days, in which the pre-optical-maximum phase is 82/16 days, for 1.2/1.38 M ⊙, respectively. Optically thick winds start at the end of the X-ray flash and cease at the beginning of the supersoft X-ray phase. We also present supersoft X-ray light curves including a prompt X-ray flash and later supersoft X-ray phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.