Abstract

Accurate estimation of the state-of-charge (SoC) and state-of-health (SoH) for an operating battery, as a critical task for battery health management, greatly depends on the validity and generalizability of battery models. Due to the variability and uncertainties involved in battery design, manufacturing, and operation, developing a generally applicable battery physical model is a big challenge. To eliminate the dependency of SoC and SoH estimation on battery physical models, this paper presents a generic data-driven approach for lithium-ion battery health management that integrates an artificial neural network (ANN) with a dual extended Kalman filter (DEKF) algorithm. The ANN is trained offline to model the battery terminal voltages to be used by the DEKF. With the trained ANN, the DEKF algorithm is then employed online for SoC and SoH estimation, where voltage outputs from the trained ANN model are used in DEKF state-space equations to replace the battery physical model. Experimental results are used to demonstrate the effectiveness of the developed model-free approach for battery health management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.