Abstract

Wearable electronic medical devices measuring continuous biological signals for early disease diagnosis should be small and lightweight for consecutive usability. As a result, there has been an increasing need for new energy supply systems that provide continuous power without any interruption to the operation of the medical devices associated with the use of conventional batteries. In this work, we developed a patch-type self-charging supercapacitor that can measure biological signals with a continuous energy supply without batteries. The glucose oxidase coated on the surface of the microneedle-type glucose sensor encounters glucose in the interstitial fluids of the human body. Electrons created by glucose oxidation operate the self-powered system in which charging begins with the generation of potential differences in supercapacitor electrodes. In an 11 mM glucose solution, the self-powered solid-state supercapacitors (SPSCs) showed a power density of 0.62 mW/cm2, which resulted in self-charging of the supercapacitor. The power density produced by each SPSC with a drop of 11 mM glucose solution was higher than that produced by glucose-based biofuel cells. Consequently, the all-in-one self-powered glucose sensor, with the aid of an Arduino Uno board and appropriate programming, effectively distinguished normal, prediabetic, and diabetic levels from 0.5 mL of solutions absorbed in a laboratory skin model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.