Abstract

Although emerging evidence suggests that the pathogenesis of Parkinson's disease (PD) is closely related to the aggregation of alpha-synuclein (α-syn) in the midbrain, the clearance of α-syn remains an unmet clinical need. Here, we develop a simple and efficient strategy for fabricating the α-syn nanoscavenger for PD via a reprecipitation self-assembly procedure. The curcumin analogue-based nanoscavenger (NanoCA) is engineered to be capable of a controlled-release property to stimulate nuclear translocation of the major autophagy regulator, transcription factor EB (TFEB), triggering both autophagy and calcium-dependent exosome secretion for the clearance of α-syn. Pretreatment of NanoCA protects cell lines and primary neurons from MPP+-induced neurotoxicity. More importantly, a rapid arousal intranasal delivery system (RA-IDDS) was designed and applied for the brain-targeted delivery of NanoCA, which affords robust neuroprotection against behavioral deficits and promotes clearance of monomer, oligomer, and aggregates of α-syn in the midbrain of an MPTP mouse model of PD. Our findings provide a clinically translatable therapeutic strategy aimed at neuroprotection and disease modification in PD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.