Abstract

Although harmony search (HS) algorithm has shown many advantages in solving global optimization problems, its parameters need to be set by users according to experience and problem characteristics. This causes great difficulties for novice users. In order to overcome this difficulty, a self-adaptive multi-objective harmony search (SAMOHS) algorithm based on harmony memory variance is proposed in this paper. In the SAMOHS algorithm, a modified self-adaptive bandwidth is employed, moreover, the self-adaptive parameter setting based on variation of harmony memory variance is proposed for harmony memory considering rate (HMCR) and pitch adjusting rate (PAR). To solve multi-objective optimization problems (MOPs), the proposed SAMOHS uses non-dominated sorting and truncating procedure to update harmony memory (HM). To demonstrate the effectiveness of the SAMOHS, it is tested with many benchmark problems and applied to solve a practical engineering optimization problem. The experimental results show that the SAMOHS is competitive in convergence performance and diversity performance, compared with other multi-objective evolutionary algorithms (MOEAs). In the experiment, the impact of harmony memory size (HMS) on the performance of SAMOHS is also analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.