Abstract
AbstractThis paper presents a MAS dedicated to abnormal behaviors detection and alerts triggering in the maritime surveillance area. This MAS uses anomalies issued from an experienced Rule Engine implementing maritime regulation. It evaluates ships behavior cumulating the importance of related anomalies and triggers relevant alerts towards human operators involved in maritime surveillance. These human operators evaluate triggered alerts and confirm or invalidate them. Invalidated alerts are sent back to the MAS for a learning step since it self-adapts anomalies values to be consistent with human operators feedbacks. This MAS is implemented in the context of the project I2C, an EU funded project dedicated to abnormal ships behavior detection and early identification of threats such as oil slick, illegal fishing, or lucrative criminal activities (e.g. goods, drugs, or weapons smuggling).KeywordsMaritime SurveillanceAlertLearningAdaptive MAS
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.