Abstract
The estimation of blur kernel is the first and principal steps in the deconvolution of single blurred image. The quality of image restoration highly depends on its estimation accuracy. We then propose a new modified-Radon-transform approach along with a low-high-pass filtering method to estimate the motion blur parameters by a self-adaptive learning strategy, which greatly improved the deblurring quality of the blurred image. The Gaussian low-pass and high-pass filters are adopted to reduce the noise level in blurred image, and the batch normalization and self-adaptive method are considered to eliminate the interference from the noise stripes. It is noted that the estimation of blur angle plays an important cue for the exploration of blur kernel. The experimental evaluation is conducted on both synthetic VOC2012 database as well as the natural-real motion blurred single image with or without noise. The experimental results show that our proposed method can obtain more accurate and more reliable blur parameters than other approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.