Abstract
Recently, with the development of new energy technologies, all-electric ships (AESs) with hybrid energy storage system (HESS) are becoming a promising solution to reduce fuel consumption and emissions. However, the high maneuverability of ships during the actual navigation places higher performance requirements on the HESS, which presents a nonlinear and multi-objective challenge for the HESS design. Therefore, it is necessary to consider the coupling between HESS sizing and energy management strategy (EMS). In this paper, a self-adaptive joint optimization framework (SJOF) for marine HESS design considering load fluctuation characteristics is proposed, which can find the optimal decision solution with excellent system economic and battery life performance for AES HESS design. Based on the rain flow counting (RFC) method, a multi-objective joint optimization method considering life cycle cost (LCC) and battery degradation index (BDI) is introduced into SJOF. Besides, a novel EMS including the self-adaptive segmentation mechanism (SSM) and power allocation is proposed, which can achieve the most efficient energy scheduling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.