Abstract

AbstractThis research proposes a novel self-adaptive differential evolution algorithm for solving continuous optimization problems. This paper focuses on redesiging the self-adaptive strategy for the mutation parameters. The new mutation parameters adjust themselves to the current situation of the algorithm. When the search is stagnant, the first mutation parameter that scales the difference between the best vector and the target vector will be increased. In contrast, the second mutation parameter that scales the difference between two random target vectors will be decreased. On the other hand, when the search progresses well towards the global optimum, the algorithm will enhance the search of the surrounding space by doing the opposite of the above actions. The performance of the proposed self-adaptive differential evolution algorithm was evaluated and compared with the classic differential evolution algorithm on 7 benchmark functions. The experimental results showed that the proposed algorithm converged much faster than the classic differential evolution algorithm on all benchmark functions.KeywordsDifferential evolutionOptimizationSelf-adaptiveMutation strategy

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.