Abstract

This paper presents a fault diagnosis system for an automotive air-conditioner blower based on a noise emission signal using a self-adaptive data analysis technique. The proposed diagnosis system consists of feature extraction using the empirical mode decomposition (EMD) method and fault classification using the artificial neural network technique. The EMD method has been developed quite recently to adaptively decompose the non-stationary and non-linear signals. It sifts the complex signal of time series without losing its original properties and then obtains some useful intrinsic mode function (IMF) components. Calculating the energy of each component can reduce the computation dimensions and enhance classification performance. These energy features of various fault conditions are used as inputs to train the artificial neural network. In the fault classification, the probabilistic neural network (PNN) is used to verify the performance of the proposed system and compare with the traditional technique, back-propagation neural network (BPNN). The experimental results indicated the proposed technique performed well for quickly and accurately estimating fault conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.