Abstract
The Artificial Bee Colony (ABC) algorithm is an optimization algorithm inspired by the foraging behavior of bee swarms. Similar to some evolutionary algorithms, there is a main limitation in ABC, i.e., in many problems, ABC is good at exploration but poor at exploitation. Thus, in order to overcome this limitation and improve the performance of ABC when dealing with various kinds of optimization problems, we proposed a self-adaptive artificial bee colony algorithm with symmetry initialization (SABC-SI). In our SABC-SI algorithm, a novel population initialization method based on half space and symmetry is designed, and such method can increase the diversity of initial solutions. Besides, a self- adaptive search mechanism and several new Candidate Solution Generating Strategies (CSGSes) have also been developed. Consequently, the evolutionary strategies can be selected dynamically according to their search performance. Moreover, the selection operator is improved by eliminating some of the poor solutions and making good use of the two best solutions in both the current and previous generations. The novel algorithm was tested on 25 different benchmark functions. The experimental results show that SABC-SI outperforms several state-of-the-art algorithms, which indicates that it has great potential to be applied to a wide range of optimization problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.