Abstract
Stepsize determination is an important component of algorithms for solving several mathematical formulations. In this article, a self-adaptive Armijo strategy is proposed to determine an acceptable stepsize in a more efficient manner. Instead of using a fixed initial stepsize in the original Armijo strategy, the proposed strategy allows the starting stepsize per iteration to be self-adaptive. Both the starting stepsize and the acceptable stepsize are thus allowed to decrease as well as increase by making use of the information derived from previous iterations. This strategy is then applied to three well-known algorithms for solving three traffic equilibrium assignment problems with different complexity. Specifically, we implement this self-adaptive strategy in the link-based Frank–Wolfe algorithm, the route-based disaggregate simplicial decomposition algorithm and the route-based gradient projection algorithm for solving the classical user equilibrium problem, the multinomial logit-based stochastic user equilibrium (MNL SUE) and the congestion-based C-logit SUE problem, respectively. Some numerical results are also provided to demonstrate the efficiency and applicability of the proposed self-adaptive Armijo stepsize strategy implemented in traffic assignment algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.