Abstract

The autonomous acquisition of sensory-motor skills along multiple developmental stages is one of the current challenges in robotics. To this end, we propose a new developmental cognitive architecture that combines multipurpose predictors and principles of self-verification for the robust bootstrapping of sensory-motor skills. Our architecture operates with loops formed by both mental simulation of sensory-motor sequences and their subsequent physical trial on a robot. During these loops, verification algorithms monitor the predicted and the physically observed sensory-motor data. Multiple types of predictors are acquired through several developmental stages. As a result, the architecture can select and plan actions, adapt to various robot platforms by adjusting proprioceptive feedback, predict the risk of self-collision, learn from a previous interaction stage by validating and extracting sensory-motor data for training the predictor of a subsequent stage, and finally acquire an internal representation for evaluating the performance of its predictors. These cognitive capabilities in turn realize the bootstrapping of early hand-eye coordination and its improvement. We validate the cognitive capabilities experimentally and, in particular, show an improvement of reaching as an example skill.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.