Abstract
The continuous growth of the e-commerce industry has rendered the problem of product retrieval particularly important. As more enterprises move their activities on the Web, the volume and the diversity of the product-related information increase quickly. These factors make it difficult for the users to identify and compare the features of their desired products. Recent studies proved that the standard similarity metrics cannot effectively identify identical products, since similar titles often refer to different products and vice-versa. Other studies employ external data sources to enrich the titles; these solutions are rather impractical, since the process of fetching external data is inefficient. In this paper we introduce UPM, an unsupervised algorithm for matching products by their titles that is independent of any external sources. UPM consists of three stages. During the first stage, the algorithm analyzes the titles and extracts combinations of words out of them. These combinations are evaluated in stage 2 according to several criteria, and the most appropriate of them are selected to form the initial clusters. The third phase is a post-processing verification stage that refines the initial clusters by correcting the erroneous matches. This stage is designed to operate in combination with all clustering approaches, especially when the data possess properties that prevent the co-existence of two data points within the same cluster. The experimental evaluation of UPM with multiple datasets demonstrates its superiority against the state-of-the-art clustering approaches and string similarity metrics, in terms of both efficiency and effectiveness.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.