Abstract

An adaptive predictor for discrete time stochastic processes with constant but unknown parameters is described. The predictor which in real time tunes its parameters using the method of least squares is called a self-tuning predictor. The predictor has attractive asymptotic properties. If the parameter estimation converges and if the predictor contains parameters enough, then it will converge to the minimum square error predictor that could be obtained if the parameters of the process were known. The computations to be carried out at each sampling interval are very moderate and the algorithm is well suited for real-time applications. The self-tuning predictor can be used to predict processes which contain trends or periodic disturbances. Further, the algorithm can easily be modified in order to make it possible to predict processes with slowly time-varying parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.