Abstract
Artificial neural networks (ANN) are applicable for and forecasting without the need to calculate complex nonlinear functions. This paper evaluates the effectiveness of temperature, evapotranspiration, precipitation and inflow factors, and the lag time of those factors, as variables for simulating and forecasting of runoff. The genetic algorithm (GA) is coupled with ANN to determine the optimal set of variables for streamflow forecasting. The minimization of the total mean square error (MSE) is considered as the objective function of the ANN-GA method in this paper. Our results show the effectiveness of the ANN-GA for simulating and forecasting runoff with consistent accuracy compared with using pure ANN for runoff simulation and forecasting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.