Abstract
To improve the reliability and yield of thermopile infrared detectors, a self-test, self-calibration and self-repair methodology is proposed in this paper. A novel micro-electro-mechanical system (MEMS) infrared thermopile detector structure is designed in this method with a heating resistor building on the center of the membrane. The heating resistor is used as the stimuli of the sensing element on chip to achieve a self-test, and the responsivity related with ambient temperature can be calibrated by the equivalent model between electrical stimuli and physical stimuli. Furthermore, a fault tolerance mechanism is also proposed to localize the fault and repair the detector if the detector fails the test. The simulation results with faults simulated by the Monte Carlo stochastic model show that the proposed scheme is an effective solution to improve the yield of the MEMS thermopile infrared detector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.