Abstract

Pseudocapacitor has recently emerged as an important electrical energy storage technology that plays a critical role in portable electronic device, hybrid electric vehicle, backup energy system, and so on. In spite of the great advances, preparing ultra-stable pseudocapacitor with excellent electrochemical performance is still very challenging. Herein, we developed a simple but novel self-template method to synthesize hierarchical hollow NiMoS4 nanospheres with ultrathin shell thickness. During the preparation, nickel-molybdenum oxides coated SiO2 precursors were firstly synthesized. After a sulfidation process with Na2S under hydrothermal condition, the precursors were transformed into hierarchical hollow NiMoS4 nanospheres. Simultaneously, the interior SiO2 was well etched by tuning the initial Ni/S molar ratio. In addition, hollow NiMoS4 nanospheres with different shell thickness were also prepared. Remarkably, the obtained NiMoS4 nanospheres show a very high electrochemical activity due to their fascinating structural and compositional features. The electrode prepared from the NiMoS4 nanospheres delivers a high specific capacity of 1094 C g−1 current density of 1 A g−1 with enhanced cycling stability of 97.95% capacitance retention after 10,000 cycles, making them to be potential electrode materials for SCs and other related energy storage devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call