Abstract

Entity alignment (EA), aiming to match entities with the same meaning across different knowledge graphs (KGs), is a critical step in knowledge fusion. Existing EA methods usually encode the multi-aspect features of entities as embeddings and learn to align the embeddings with supervised learning. Although these methods have achieved remarkable results, two issues have not been well addressed. Firstly, these methods require pre-aligned entity pairs to perform EA tasks, limiting their applicability in practice. Secondly, these methods overlook the unique contribution of digital attributes to EA tasks when utilising attribute information to enhance entity features. In this paper, we propose a self-supervised entity alignment framework via attribute correction. Specifically, we first design a highly effective seed pair generator based on multi-aspect features of entities to solve the labour-intensive problem of obtaining pre-aligned entity pairs. Then, a novel alignment mechanism via attribute correction is proposed to address the problem that different types of attributes have different contributions to the EA task. Extensive experiments on real-world datasets with semantic features demonstrate that our framework outperforms state-of-the-art (SOTA) EA tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.