Abstract

SummaryFault‐tolerance and self‐organization are critical properties in modern distributed systems. Self‐stabilization is a class of fault‐tolerant distributed algorithms which has the ability to recover from any kind and any finite number of transient faults and topology changes. In this article, we propose a self‐stabilizing distributed algorithm for the 1‐MIS problem under the unfair central daemon assuming the distance‐3 model. Here, in the distance‐3 model, each process can refer to the values of local variables of processes within three hops. Intuitively speaking, the 1‐MIS problem is a variant of the maximal independent set (MIS) problem with improved local optimizations. The time complexity (convergence time) of our algorithm is steps and the space complexity is bits, where is the number of processes. Finally, we extend the notion of 1‐MIS to ‐MIS for each nonnegative integer , and compare the set sizes of ‐MIS () and the maximum independent set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.