Abstract

We consider a general metric Steiner problem, which involves finding a set S with the minimal length, such that S∪A is connected, where A is a given compact subset of a given complete metric space X; a solution is called the Steiner tree. Paolini, Stepanov, and Teplitskaya in 2015 provided an example of a planar Steiner tree with an infinite number of branching points connecting an uncountable set of points. We prove that such a set can have a positive Hausdorff dimension, which was an open question (the corresponding tree exhibits self-similar fractal properties).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.