Abstract
Conventional AMB(active magnetic bearings) systems consist of electromagnetic coils, position sensors, power amplifiers and a feedback controller. This hardware configuration can lead to a structural complexity, problems of space limitations for the installation, and position control difficulties due to the non-collocation of actuators and sensors. In this paper, a self-sensing mechanism is proposed to resolve such limitations of the general AMB system. The proposed self-sensing scheme uses a phase difference of the injected current of two opposite electromagnetic actuators while an object is levitating between the actuators. The relationship between the phase difference of injected currents and the position of a levitated object was theoretically derived and linearized. In order to realize the proposed self-sensing scheme, a signal processing algorithm was developed. The frequency response of the estimator was measured to verify the performance of the proposed self-sensing scheme. In addition, a magnetic levitation and a disturbance rejection response were experimentally obtained to verify the feasibility of the proposed self-sensing mechanism. Experimental results showed that the developed self-sensing technique has similar performance as a practical gap sensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.