Abstract

We describe a self-sealing plain weave E-glass epoxy composite with the healing components, microencapsulated dicyclopentadiene (DCPD), and paraffin wax coated Grubbs’ catalyst dispersed throughout the matrix. In this work, sealing is assessed through use of a pressure cell apparatus to detect nitrogen flow through the thickness direction of a damaged composite. A controlled amount of microcracking is introduced through cyclic indentation of opposing surfaces of the sample. The resulting damage zone is proportional to the indentation load. We investigate the effect of DCPD microcapsule size and concentration on the self-sealing ability of plain weave E-glass epoxy composites. For 51 µm diameter capsules (6.5 wt%), 67% of the self-sealing composite panels fully seal with no leaking, compared to 0% of the control panels with no sealing ability. When the amount of damage is reduced, 100% of the self-sealing samples resealed. Sealing performance decreases with smaller diameter capsules (18 µm diameter) and lower capsule concentrations (2.7 wt%), indicating that there is a minimum capsule size and concentration to deliver enough healing agent to seal a given damage volume.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.