Abstract

The overall goal of this project is the development of a new methodology for translating advances in molecular level understanding of toxicological responses into a predictive tool for dose response in whole animals and humans exposed to single compounds or mixtures of compounds. The methodology incorporates a mechanistic cellular level model into a PBPK (physiologically based pharmacokinetic) model which simultaneously guides the development of an in vitro cell culture analog (CCA) to the PBPK. Where the PBPK specifies an organ, (e.g., liver) the in vitro or CCA system contains a compartment with the appropriate cell or cell population (e.g., hepatocytes for the liver). The CCA has significant advantages over other in vitro systems and PBPK systems used independently for evaluating metabolic responses to drugs or potentially toxic chemicals where the exchange of metabolites between organs is likely to be important. The CCA system is superior to a PBPK because an a priori description of complete metabolism is not required and secondary, unexpected interactions can be detected. The CCA system, unlike other in vitro systems, gives a dynamic response that realistically simulates in vivo interactions between organs. Furthermore, the CCA allows dosing on the same basis as animal tests (e.g., milligrams per kilogram of body mass equivalent). Because the construction of a CCA is guided by a PBPK, this approach allows extrapolation to low doses and across species, including extrapolation to humans. We have constructed a prototype system and have conducted proof-of-concept experiments using naphthalene as a test chemical. These experiments clearly demonstrate the ability to generate a reactive metabolite in one compartment and detect its effects (on LDH release and glutathione depletion) in a second compartment. However, this prototype device would be expensive to replicate and requires nearly constant supervision from a trained investigator. For this concept to replace animals an inexpensive, self-regulating device is needed. An initial design to accomplish this goal is described as well as the corresponding model using naphthalene as a test compound. (c) 1996 John Wiley & Sons, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call