Abstract

We consider an interacting particle system on a graph which, from a macroscopic point of view, looks like ℤd and, at a microscopic level, is a complete graph of degree N (called a patch). There are two birth rates: an inter-patch birth rate λ and an intra-patch birth rate ϕ. Once a site is occupied, there is no breeding from outside the patch and the probability c(i) of success of an intra-patch breeding decreases with the size i of the population in the site. We prove the existence of a critical value λc(ϕ, c, N) and a critical value ϕc(λ, c, N). We consider a sequence of processes generated by the families of control functions {cn}n∈ℕ and degrees {Nn}n∈ℕ; we prove, under mild assumptions, the existence of a critical value nc(λ, ϕ, c). Roughly speaking, we show that, in the limit, these processes behave as the branching random walk on ℤd with inter-neighbor birth rate λ and on-site birth rate ϕ. Some examples of models that can be seen as particular cases are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.