Abstract
Electrocaloric (EC) cooling presents a promising approach to efficient and compact solid-state heat pumps. However, reported EC coolers have complex architectures and limited cooling temperature lift. In this work, we introduce a self-regenerative heat pump (SRHP) using a cascade of EC polymer film stacks, which have electrostrictive actuations in response to an electric field that are directed to realize efficient heat transfer, eliminating the need for additional transportive or regenerative mechanisms. The SRHP demonstrates a cooling of 8.8 kelvin below ambient temperature in 30 seconds and delivers a maximum specific cooling power of 1.52 watts per gram. The temperature lift of the SRHP is 14.2 kelvin. These results underscore the potential of the compact solid-state cooling mechanism to address the increasing need for localized thermal management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.