Abstract
Sustainable, self-powered wearable devices that record physiological biosignals are essential in personalized health monitoring but have yet to be achieved. Here a novel, self-powered, MXene-based, 3D-printed, flexible, and integrated wearable system for continuous, real-time physiological biosignals monitoring is proposed, developed, characterized, and validated. The system contains power-efficient triboelectric nanogenerators (TENG), highly sensitive pressure sensors, and multifunctional circuitry. MXene, with distinctive electronegative and conductive characteristics, is the core material and is amenable to 3D-printing. MXene is coupled with a skin-like Styrene-ethylene-butylene-styrene (SEBS) substrate with a positive triboelectric property and high stretchability. This self-powered physiological sensing system exhibited a power output of ~ 816.6 mW m−2, a sensitivity of ~ 6.03 kPa−1, a low detection limit of ~ 9 Pa, and a fast response time of ~ 80 ms, enabling continuous radial artery pulse (RAP) waveform monitoring without external power. Its continuous, on-demand, fully self-powered RAP monitoring and wireless data and power transmission through near-field communication are demonstrated. This is the first report of a wearable system for continuous and real-time physiological biosignals monitoring fully powered by human motion, signaling exciting potential in the field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.