Abstract
AbstractFlexible gas sensors play an indispensable role in diverse applications spanning from environmental monitoring to portable medical electronics. Full wearable gas monitoring system requires the collaborative support of high‐performance sensors and miniaturized circuit module, whereas the realization of low power consumption and sustainable measurement is challenging. Here, a self‐powered and reusable all‐in‐one NO2 sensor is proposed by structurally and functionally coupling the sensor to the battery, with ultrahigh sensitivity (1.92%/ppb), linearity (R2 = 0.999), ultralow theoretical detection limit (0.1 ppb), and humidity immunity. This can be attributed to the regulation of the gas reaction route at the molecular level. The addition of amphiphilic zinc trifluoromethanesulfonate (Zn(OTf)2) enables the H2O‐poor inner Helmholtz layer to be constructed at the electrode–gel interface, thereby facilitating the direct charge transfer process of NO2 here. The device is then combined with a well‐designed miniaturized low‐power circuit module with signal conditioning, processing and wireless transmission functions, which can be used as wearable electronics to realize early and remote warning of gas leakage. This study demonstrates a promising way to design a self‐powered, sustainable, and flexible gas sensor with high performance and its corresponding wireless sensing system, providing new insight into the all‐in‐one system of gas detection.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.