Abstract

Controlling built-in potential can enhance the photoresponse performance of self-powered photodetectors. Among the methods for controlling the built-in potential of self-powered devices, postannealing is simpler, more efficient, and less expensive than ion doping and alternative material research. In this study, a CuO film was deposited on a β-Ga2O3 epitaxial layer via reactive sputtering with an FTS system, and a self-powered solar-blind photodetector was fabricated through a CuO/β-Ga2O3 heterojunction and postannealed at different temperatures. The postannealing process reduced the defects and dislocations at the interface between each layer and affected the electrical and structural properties of the CuO film. After postannealing at 300 °C, the carrier concentration of the CuO film increased from 4.24 × 1018 to 1.36 × 1020 cm-3, bringing the Fermi level toward the valence band of the CuO film and increasing the built-in potential of the CuO/β-Ga2O3 heterojunction. Thus, the photogenerated carriers were rapidly separated, increasing the sensitivity and response speed of the photodetector. The as-fabricated photodetector with 300 °C postannealing exhibited a photo-to-dark current ratio of 1.07 × 103; responsivity and detectivity of 30.3 mA/W and 1.10 × 1012 Jones, respectively; and fast rise and decay times of 12 ms and 14 ms, respectively. After three months of storage in an open-air space, the photocurrent density of the photodetector was maintained, indicating good stability with aging. These results suggest that the photocharacteristics of CuO/β-Ga2O3 heterojunction self-powered solar-blind photodetectors can be improved through built-in potential control using a postannealing process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.