Abstract

SummaryThe development of a communication infrastructure has made possible the expansion of the popular massively multiplayer online games. In these games, players all over the world can interact with one another in a virtual environment. The arrival rate of new players to the game environment causes fluctuations and players always expect services to be available and offer an acceptable service‐level agreement (SLA), especially in terms of response time and cost. Cloud computing emerged in the recent years as a scalable alternative to respond to the dynamic changes of the workload. In massively multiplayer online games applications, players are allowed to lease resources from a cloud provider in an on‐demand basis model. Proactive management of cloud resources in the face of workload fluctuations and dynamism upon the arrival of players are challenging issues. This paper presents a self‐learning fuzzy approach for proactive resource provisioning in cloud environment, where key is to predict parameters of the probability distribution of the incoming players in each period. In addition, we propose a self‐learning fuzzy autoscaling decision‐maker algorithm to compute the proper number of resources to be allocated to each tier in the massively multiplayer online games by applying the predicted workload and user SLA. We evaluate the effectiveness of the proposed approach under real and synthetic workloads. The experimental results indicate that the proposed approach is able to allocate resources more efficiently than other approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.