Abstract

A novel self-learning expert system for diagnosis in Traditional Chinese medicine (TCM) was constructed by incorporating several data mining techniques, mainly including an improved hybrid Bayesian network learning algorithm, [email protected]?ve-Bayes classifiers with a novel score-based strategy for feature selection and a method for mining constrained association rules. The data-driven nature distinguished the system from those existing TCM expert systems based on if-then rules to address knowledge elicitation problem. Moreover, the learned knowledge was provided in multiple forms including causal diagram, association rule and reasoning rules derived from classifiers. Finally, five representative cases were diagnosed to evaluate the performance of the system and the encouraging results were obtained. The results show that the prototype system performs well in diagnosis of TCM, and could be expected to be useful in the practice of TCM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.