Abstract

Development of highly active, robust electrocatalysts to accelerate the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial and challenging for the practical application of metal-air batteries. In this effort, a novel and facile self-jet vapor-phase growth approach is developed, from which highly dispersive FeNi alloy nanoparticles (NPs) encapsulated in N-doped carbon nanotubes (NCNT) grown on a cotton pad (FeNi@NCNT-CP) can be fabricated. The as-prepared FeNi@NCNT-CP clusters exhibit superior bifunctional catalytic activity, with a high half-wave potential of 0.85V toward ORR and a low potential of 1.59V at 10mA cm-2 toward OER. Specifically, owing to the synergistic effects of FeNi alloy NPs and NCNT, FeNi@NCNT-CP clusters deliver excellent stability, demonstrating a small potential gap of 0.73V between ORR and OER after operation for 10000 cycles. Furthermore, FeNi@NCNT-CP serves as a cost-effective, superior catalyst for the cathode of a rechargeable Zn-air battery, outperforming a catalyst mixture of expensive Pt/C and IrO2 . FeNi@NCNT-CP provides a maximum power density of 200mW cm-2 and a cycling stability of up to 250 h. This contribution provides new prospects to prepare non-noble electrocatalysts for metal-air battery cathodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call