Abstract

Deep neural networks are the driving force of the recent explosion of machine learning applications in everyday life. However, they usually require a lot of training data to work well, and they act as black-boxes, making predictions without any explanation about them. This paper presents Memory Wrap, a module (i.e, a set of layers) that can be added to deep learning models to improve their performance and interpretability in settings where few data are available. Memory Wrap adopts a sparse content-attention mechanism between the input and some memories of past training samples. We show that adding Memory Wrap to standard deep neural networks improves their performance when they learn from a limited set of data, and allows them to reach comparable performance when they learn from the full dataset. We discuss how the analysis of its structure and content-attention weights helps to get insights about its decision process and makes their predictions more interpretable, compared to the same networks without Memory Wrap. We test our approach on image classification tasks using several networks on three different datasets, namely CIFAR10, SVHN, and CINIC10.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.