Abstract

Abstract Owing to their cost-effectiveness and renewability, wood-based solar steam generators (WSSG) have gained prominence in the field of desalination and water purification. However, conventional bi-layered WSSG is limited by the high energy consumption of fabrication and low strength of the bonding interface, which makes them unsuitable for long-term applications. Here, a unique bi-layered structural composite with polyaniline (PANI) nanorods uniformly incorporated into a 3D mesoporous matrix of natural wood was fabricated via a one-step in-situ polymerization strategy. The PANI decorated wood (PANI-wood) shows ultrahigh sunlight absorptance (∼98.9%) over a broad wavelength range (200–2500 nm) due to the conjugation of coralloid PANI nanorods and wood. Moreover, numerous aligned wood microchannels enable constant and rapid water transport at the air-water interface under the pressure of capillary forces. The highly stable PANI-wood composite shows high potential as an ideal solar steam generator with a high evaporation rate of 1.62 kg m2 h−1, which is significantly higher than those of other previously reported wood-based bi-layered composites. Moreover, PANI-wood exhibits long-term floating and is chemically stable, making it a potential candidate for low-energy photothermal interfacial sewage purification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call