Abstract

AbstractA self‐exciting marked point process approach is proposed to model clustered low‐flow events. It combines a self‐exciting ground process designed to capture the temporal clustering behavior of extreme values and an extended Generalized Pareto mark distribution for the exceedances over a subasymptotic threshold. The model takes into account the dependence between the magnitude and occurrence time of exceedances and allows for closed‐form inference on tail probabilities and large quantiles. It is used to analyze daily water levels from the Rivière des Mille Îles (Québec, Canada) and to characterize drought patterns in the Montréal area. The model is useful to generate short‐term probability forecasts and to estimate the return period of major droughts. This information on the drought events is critical to water resource professionals in planning, designing, building, and managing more efficient water resource systems to hedge against the water shortage in case of extreme droughts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.