Abstract
The Self-Enforcing Network (SEN), which is a self-organized learning neural network, is introduced as a tool for clustering to define reference types in complex data. In order to achieve this, a cue validity factor is defined, which first steers the clustering of the data. Finding reference types allows the analysis and classification of new data. The results show that a user can influence the clustering of data by sEN, thus allowing the analysis of the data depending on specific interests. The described tool includes concrete examples with real clinical data and shows the potential of such a network for the analysis of complex data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.