Abstract

A self-duty-cycled non-coherent impulse radio-ultra wideband receiver targeted at low-power and low-data-rate applications is presented. The receiver is implemented in a 130 nm CMOS technology and works in the 7.2---8.5 GHz UWB band, which covers the IEEE 802.15.4a and 802.15.6 mandatories high-band channels. The receiver architecture is based on a non-coherent RF front-end (high gain LNA and pulse detector) followed by a synchronizer block (clock and data recovery or CDR function and window generation block), which enables to shut down the power-hungry LNA between pulses to strongly reduce the receiver power consumption. The main functions of the receiver, i.e. the RF front-end and the CDR block, were measured stand-alone. A maximum gain of 40 dB at 7.2 GHz is measured for the LNA. The RF front-end achieves a very low turn-on time (<1 ns) and an average sensitivity of ź92 dBm for a 10ź3 BER at a 1 Mbps data rate. A root-mean-square (RMS) jitter of 7.9 ns is measured for the CDR for a power consumption of 54 µW. Simulation results of the fully integrated self-duty-cycled 7.2---8.5 GHz IR-UWB receiver (that includes the measured main functions) confirm the expected performances. The synchronizer block consumes only 125 µW and the power consumption of the whole receiver is 1.8 mW for a 3% power duty-cycle (on-window of 30 ns).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call