Abstract

The self-dual Yang-Mills equations play a central role in the study of integrable systems. In this paper we develop a formalism for deriving a four dimensional integrable hierarchy of commuting nonlinear flows containing the self-dual Yang-Mills flow as the first member. We show that upon appropriate reduction and suitable choice of gauge group it produces virtually all well known hierarchies of soliton equations in 1+1 and 2+1 dimensions and can be considered as a “universal” integrable hierarchy. Prototypical examples of reductions to classical soliton equations are presented and related issues such as recursion operators, symmetries, and conservation laws are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call