Abstract
Biomarkers and their concentration levels are critical indicators of metabolomics for clinical applications. Rapid and sensitive analysis methods are essential for realizing timely and efficient quantitation of those significant biomarkers. In this work, a self-driven microfluidic immunosensor was developed for rapid all-in-one separation, enrichment, and detection of biomarkers. This immunosensor was constructed from a cyclic olefin copolymer (COC) channel layer and a polydimethylsiloxane (PDMS) sensing layer. The COC channel layer was modified through protein adsorption, immobilization, and remaining active site blocking. The obtained hydrophilic microchannels not only reduce the nonspecific adsorption, but also provide stable capillary-driven flow generation with linear velocities up to 20mm/s for aqueous solution auto-injection. The PDMS sensing layer was modified using capture antibodies to accomplish affinity recognition of target biomarkers. Procalcitonin (PCT) and serum amyloid A (SAA) were selected as model biomarkers in the feasibility study on applying the self-driven microfluidic immunosensor to bioassay. The limits of detection of PCT and SAA were 7.9ng/L and 7.6μg/L, respectively. Moreover, the whole process can be accomplished within 60min with excellent selectivity and reproducibility. In clinical serum sample analysis, satisfactory recoveries were achieved for PCT and SAA in the ranges of 85.0-103.0% and 95.5-106.0%, respectively, with relative standard deviations less than 5.3%. The method accuracy was further confirmed by the results of commercial immunoassay kits. This simple and easily operated immunosensor provides a rapid and sensitive biomarker analysis tool, and promotes the further development of automated and easy-to-use microfluidic immunoassays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.